
Packing dBase Tables
Having just prepared a routine to enable me to pack a
dBase table I picked up The Delphi Magazine (Issue 9)
to discover that Mike Orriss had already done it!
However, his routine is for Paradox tables. When using
dBase tables it is necessary to use the dbiPackTable
routine instead of the dbiDoRestructure.

Listing 1 shows a unit which can be called with just
the single parameter of the table object which you
require to be packed.

Contributed by Richard Smith, CompuServe
100446,327

Changing TEdit Text
Usually, in the OnChange event of a TEdit control, you
cannot change the Text value: it chains another
OnChange event recursively until the stack is exhausted.
To change the Text value, you must assign OnChange to
nil, make the change, and then return the event to its
original value. This code shows how:

procedure TForm1.Edit1Change(Sender: TObject);
begin
 Edit1.OnChange := NIL;
 if Edit1.Text = ’Some text’ then
 Edit1.Text := ’New Value’;
 Edit1.OnChange := Edit1Change;
end;

This trick also works in OnValidate events.

Contributed by Bruno Sonnino from Sao Paulo, Brazil
(Email: bruno.sonnino@mandic.com.br)

Reading Characters: Text Or Binary?
I have recently ported a map drawing application from
Delphi 1 to Delphi 2; it was originally a Turbo Pascal 5.5
application so it is well travelled. One problem I found
concerned the use of text files.

The originator of the code (not myself) had written
routines for reading binary files that used the text file
type and read bytes as char. Since he is now my boss,
I am not passing comment on this practice. This code
worked without a problem under Delphi 1. However,
when moved to Delphi 2 the application failed to work
correctly. We traced the problem to the hex value $1A
(ASCII 26) occurring in the data, and of course this
wonderful number can also be expressed as Control Z,
the end of file marker. Once this value has been read,

ReadChar always returns it. The function Eof returns
True when called and so input ends without error.

Inspection of the library code in READCHAR.ASM
confirms the prognosis; a look at TCHR.ASM in the
Delphi 1 source shows that Borland has re-written
these routines. Once discovered we easily dealt with
this problem. Changing the file type to file (ie
untyped) and using BlockRead solved the problem and
improved the efficiency.

Contributed by Mike Rogers, Vaisala TMI Ltd (Email:
MCR@vatmi.vaisala.com)

Naming Forms And Units
I used to be annoyed by this problem. I create a form
and give it a name, say PartFrm for Part Form. Then I
work on it and finally save it. What should its file name
be? PARTFRM.PAS for PartFrm of course. But no, if you
use this, Delphi will tell you there is already something
else called PartFrm!

Actually there are two potentially conflicting names.
The form name is used as the variable name for the
form. You need another name for the unit that contains
the form. The unit name is also the 8-character file
name. Once I was aware of this, I devised a naming

unit Packtbl;
interface
uses
 DBIProcs, DBIErrs, DBITypes, DB, DBTables, sysutils;
procedure PackTable(const tbl : TTable);

implementation
procedure PackTable(const tbl : TTable);
var
 dbResult : DBIResult;
 hDB : hDBIDb;
 hCursor : hDBICur;
 pszTablename : PChar;
 pszDriverType : PChar;
 bRegenIdxs : Boolean;
 StoreExcl : boolean;
 StoreActive : boolean;
begin
 StoreExcl := tbl.exclusive;
 StoreActive := tbl.Active;
 try
 try
 tbl.open;
 hDB := tbl.DBHandle;
 tbl.close;
 tbl.exclusive := true;
 except
 on E : Exception do
 raise Exception.create(
 ’Error locking table for exclusive access:’+
 E.message);
 end;
 pszTableName := StrAlloc(25);
 StrPCopy(pszTableName, tbl.tablename);
 pszDriverType := StrAlloc(25);
 StrPCopy(pszDriverType, ’DBase’);
 bRegenIdxs := true;
 dbResult := DBiPackTable(hDB, tbl.handle,
 pszTableName, pszDriverType, bRegenIdxs);
 if dbResult <> DBIERR_NONE then
 raise EDBEngineError.create(dbResult);
 finally
 tbl.exclusive := StoreExcl;
 tbl.active := StoreActive;
 end;
end;
end.

➤ Listing 1

Tips
& Tricks

June 1996 The Delphi Magazine 61

notation. For the variable name, which is referenced
frequently, I apply my standard naming notation to
prefix it with Frm. For the unit name (and file name), I
use an alternate notation by suffixing it with Frm. So the
code looks like this:

{ file PARTFRM.PAS }
unit PartFrm;
...
var
 FrmPart: TFrmPart;

Contributed by Tung Wai Yip from Singapore (Email:
stung@pacific.net.sg)

Unique Values Only In TDBLookupCombo
When using a TDBLookupCombo to allow the user to look
up values from another table, you will only want to see
one example of each unique value of the lookup field.

Say you have a Paradox table, called STOCK, with a
field called Type. In Delphi 1 you can use a Query By
Example (QBE) file as the TTable source. First, with the
Database Desktop create a query against the TYPE table:

Query
STOCK.DB | Type |
 | Check |
EndQuery

This creates a result set with a single field. Save this as
TYPE.QBE. Next store TYPE.QBE in the TableName prop-
erty of the lookup TTable (use the name in full, including
QBE) and you will then be able to use Type as the
TDBLookupCombo’s LookupField property. Delphi 2 sup-
ports Paradox unique secondary indices, so this
workaround is not needed.

Contributed by Mike Orriss, CompuServe 100570,121

Calling Forms
To call a form using a string variable whose value is the
type of the form try the following (assuming that str
contains TForm2 etc):

Uses Form2, Form3, Form4;
procedure TForm1.Button1Click(Sender: TObject);
begin
 with TFormClass(
 FindClass(str)).Create(Application) do try
 ShowModal;
 finally
 Free;
 end;
end;
initialization
 RegisterClasses([TForm2, TForm3, TForm4]);
end.

Contributed by Mike Orriss, CompuServe 100570,121

Form Mode Change
When presenting database data for the user to view,
you may well use a modeless form. However, if the user
then wishes to edit the data (say, having clicked an Edit
button), how can you change the form from modeless
to modal without closing and re-showing it? This can
be achieved by adding code to the TDataSource’s
OnStateChange event handler to disable or enable all but
the current form, like this:

procedure TForm2.DataSource1StateChange(
 Sender: TObject);
var ix: integer;
 b: boolean;
begin
 with (Sender as TDataSource).DataSet do
 b := (State = dsBrowse);
 with Screen do
 for ix := 0 to FormCount-1 do
 if Forms[ix] <> ActiveForm then
 Forms[ix].Enabled := b;
end;

Note that preventing the form from closing while in Edit
mode (via OnCloseQuery code) is also required.

Contributed by Mike Orriss, CompuServe 100570,121

Empty Records?
If you need to find out if any of the fields in a particular
table record contain data, try this function:

function HasAnyValues(tbl: TTable): boolean;
var ix: integer;
begin
 Result := True;
 for ix:= 0 to tbl.FieldCount-1 do
 if not tbl.Fields[ix].IsNull then exit;
 Result := False;
end;

Note that the TTable.Modified property is set if any field
value is changed.

Contributed by Mike Orriss, CompuServe 100570,121

Same As Last Time...
In data entry screens, much of the data in a new record
is often exactly the same as the previous record, just
entered. One way of avoiding the user re-typing it all
again is to use a shadow table. You can synchronise via
the DataSource.OnDataChange event with code like:

if Table1.State = dsBrowse then
 Table2.GotoCurrent(Table1);

Then, after a record insert, on all affected controls you
can use their OnEnter event to copy the corresponding
value from Table2.

Contributed by Mike Orriss, CompuServe 100570,121

62 The Delphi Magazine Issue 10

	Packing dBase Tables
	Changing TEdit Text
	Reading Characters: Text Or Binary?
	Naming Forms And Units
	Unique values Only in TDBLookupCombpo
	Calling Forms
	Form Mode Change
	Empty Records
	Same As Last Time

